
Window

Window ii

COLLABORATORS

TITLE :

Window

ACTION NAME DATE SIGNATURE

WRITTEN BY October 9, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Window iii

Contents

1 Window 1

1.1 New Window Library . 1

1.2 ngadgetcode . 2

1.3 nwaitwindowevent . 3

1.4 nwindowevent . 3

1.5 ndetachgadgetlist . 4

1.6 neventid . 4

1.7 nwindow . 4

1.8 nwmousex . 8

1.9 nwmousey . 8

1.10 nwindowwidth . 8

1.11 nwindowheight . 9

1.12 nwindowx . 9

1.13 nwindowy . 9

1.14 nwindowrastport . 9

1.15 nwmove . 9

1.16 nwsize . 10

1.17 nwactivate . 10

1.18 nusewindow . 10

1.19 nclosewindow . 10

1.20 ninitwindow . 10

1.21 nwindowid . 11

1.22 nbusypointer . 11

1.23 ninnerheight . 11

1.24 ninnerwidth . 11

1.25 ndetachmenu . 11

1.26 idcmp . 12

Window 1 / 16

Chapter 1

Window

1.1 New Window Library

Window V1.52 General Information:

* Blitz Basic II library number : #168

* Library size when linked to executable: 1208 bytes

* Number of commands : 25

* Ressources automatically freed at end : Yes

NInitWindow() must be put before any other Window functions. Don’t
forget to turn the debugger ON when developping.

Commands summary:

NActivate
Statement

NBusyPointer
Statement

NCloseWindow
Statement

NDetachGadgetList
Statement

NDetachMenu
Statement

NEventID
Function (word)

NGadgetCode
Function (long)

NInnerHeight
Function (Word)

NInnerWidth

Window 2 / 16

Function (Word)

NInitWindow
Command (Boolean)

NUseWindow
Statement

NWaitWindowEvent
Function (long)

NWindow
Command (WindowID)

NWindowEvent
Function (long)

NWindowEventID Function (long)

NWindowID
Function (Long)

NWindowWidth
Function (Word)

NWindowHeight
Function (Word)

NWindowX
Function (Word)

NWindowY
Function (Word)

NWindowRastPort
Function (Long)

NWMouseX
Function (Word)

NWMouseY
Function (Word)

NWMove
Statement

NWSize
Statement

1.2 ngadgetcode

SYNTAX
Code.l = NGadgetCode

COMMAND

Window 3 / 16

After a NWaitWindowEvent result, check this function to know what it has appent
for gadgtools gadget.

ie: If the Gadget is:

+ CheckBox: NGadgetCode will return 1 or 0, reflect of the checkBox state
+ Palette : NGadgetCode will return the palette index which has been checked
+ Integer : NGadgetCode will return the number contained by the gadget
+ Option : NGadgetCode will return the index of pressed option
+ ListView: NGadgetCode will return the index of pressed item
+ Slider : NGadgetCode will return the current position of slider

1.3 nwaitwindowevent

SYNTAX
IDCMP.l = NWaitWindowEvent

FUNCTION
Wait for an event on any of the opened window. To get the window number
on which the event has appens, you need to use the NWindowEventID()
function.

Most used IDCMP are: #IDCMP_GADGETUP (a gadget is pressed)
#IDCMP_CLOSEWINDOW (the window’s closegadget is pushed)
#IDCMP_MENUPICK (a menu has be choosen)

For a full list and definition of IDCMP, look here:
IDCMP
Example:

NInitWindow 0
NInitTagList 2

NResetTagList #WA_IDCMP, #IDCMP_CLOSEWINDOW | #IDCMP_MENUPICK | #IDCMP_GADGETUP
NAddTag #WA_Flags, #WFLG_CLOSEGADGET

If NWindow(0, 100, 100, 100, 100, NTagListID)

Repeat

IDCMP.l = NWaitWindowEvent

Until IDCMP = #IDCMP_CLOSEWINDOW

Endif

End

1.4 nwindowevent

Window 4 / 16

SYNTAX
IDCMP.l = NWindowEvent

FUNCTION
Same as NWaitWindowEvent() but doesn’t halt the program. Look at

NWaitWindowEvent
for more informations.

1.5 ndetachgadgetlist

SYNTAX
NDetachGadgetList

STATEMENT
Detach the current window’s gadgetlist (if any). Note than the window
display isn’t refreshed, so you always see the gadgets, but you
can’t push them anymore (it’s only the imagery which is visble).

You can you the combination of NDetachGadgetList/NAttachGadgetList
to change ’on the fly’ a window gadgetlist.

1.6 neventid

SYNTAX
EventID = NEventID

FUNCTION
Return the last gadget/menu number which has been pushed.

1.7 nwindow

SYNTAX
WindowID.l = NWindow(#Window, x, y, Width, Height, TagList)

FUNCTION
Open a new window according to the specified taglist. The window
opened become the used window. You don’t need to use the NUseWindow
command to set it. If the WindowID is NULL, the window can’t be opened.

Available tags:

#WA_Left
#WA_Top
#WA_Width
#WA_Height
#WA_DetailPen - NOTE: only overrides NewWindow.DetailPen of -1!

Window 5 / 16

#WA_BlockPen - NOTE: only overrides NewWindow.BlockPen of -1!
#WA_IDCMP
#WA_Flags - initial values for Flags before looking at other

Boolean component Tag values
#WA_Gadgets
#WA_Title
#WA_CustomScreen - also implies CUSTOMSCREEN property
#WA_SuperBitMap - also implies #WFLG_SUPER_BITMAP refresh mode.
#WA_MinWidth
#WA_MinHeight
#WA_MaxWidth
#WA_MaxHeight

These Boolean tag items are alternatives to the NewWindow.Flags
Boolean attributes with similar names.

#WA_SizeGadget - equivalent to #WFLG_SIZEGADGET
#WA_DragBar - equivalent to #WFLG_DRAGBAR
#WA_DepthGadget - equivalent to #WFLG_DEPTHGADGET
#WA_CloseGadget - equivalent to #WFLG_CLOSEGADGET
#WA_Backdrop - equivalent to #WFLG_BACKDROP
#WA_ReportMouse - equivalent to #WFLG_REPORTMOUSE
#WA_NoCareRefresh - equivalent to #WFLG_NOCAREREFRESH
#WA_Borderless - equivalent to #WFLG_BORDERLESS
#WA_Activate - equivalent to #WFLG_ACTIVATE
#WA_RMBTrap - equivalent to #WFLG_RMBTRAP
#WA_WBenchWindow - equivalent to #WFLG_WBENCHWINDOW

(system PRIVATE)
#WA_SimpleRefresh - only specify if TRUE
#WA_SmartRefresh - only specify if TRUE
#WA_SizeBRight - equivalent to #WFLG_SIZEBRIGHT
#WA_SizeBBottom - equivalent to #WFLG_SIZEBBOTTOM
#WA_GimmeZeroZero - equivalent to #WFLG_GIMMEZEROZERO
#WA_NewLookMenus - equivalent to #WFLG_NEWLOOKMENUS

The following tag items specify new attributes of a window.

#WA_ScreenTitle - You can specify the screen title associated
with your window this way, and avoid a call to SetWindowTitles()
when your window opens.

#WA_AutoAdjust - a Boolean attribute which says that it’s OK
to move or even shrink the dimensions of this window
to fit it on the screen, within the dimension
limits specified by MinWidth and MinHeight.
Someday, this processing might be sensitive to the
currently visible portion of the screen the window
will be opening on, so don’t draw too many conclusions
about the auto-adjust algorithms.
(Normally, this attribute defaults to FALSE. However,
if you call OpenWindowTags() or OpenWindowTagList()
with a NULL NewWindow pointer, this attribute defaults
to TRUE).

#WA_InnerWidth
#WA_InnerHeight - You can specify the dimensions of the interior

region of your window, independent of what the border

Window 6 / 16

thicknesses will be. You probably want to specify
#WA_AutoAdjust to allow Intuition to move your window
or even shrink it so that it is completely on screen.

Note: using these tags puts some reasonable restrictions
on the gadgets you can specify as "border" gadgets when
you open your window. Since border gadgets determine
the border dimensions and hence the overall dimensions of
your window, those dimensions cannot be used calculating
the position or dimensions of border gadgets.

Here’s the complete list of restrictions:
- #GACT_LEFTBORDER gadgets cannot be GFLG_RELWIDTH if #WA_InnerWidth is ←↩

used.
- #GACT_RIGHTBORDER gadgets MUST be GFLG_RELRIGHT if #WA_InnerWidth is ←↩

used.
- #GACT_TOPBORDER gadgets cannot be GFLG_RELHEIGHT if #WA_InnerHeight is ←↩

used.
- #GACT_BOTTOMBORDER gadgets MUST be GFLG_RELBOTTOM if #WA_InnerHeight is ←↩

used.

#WA_PubScreenName - This tag item declares that you want your window
to open as a visitor window on the public screen whose name
is pointed to by (UBYTE *) ti_Data.

#WA_PubScreen - Open as a visitor window on the public screen
whose address if provided as (struct Screen *) ti_Data.
To ensure that this screen remains open long enough, you
must either:
1) Be the screen’s owner
2) have another window already open on the screen
3) use LockPubScreen()
Using exec.library/Forbid() is not sufficient.

You can provide ti_Data to be NULL (zero), without any
of the above precautions, to specify the default public screen.

#WA_PubScreenFallBack - This Boolean attribute specifies that a
visitor window should "fall back" to opening on the default
public screen if the explicitly specify public screen is not
available.

#WA_WindowName - this visionary specification of a window
rendezvous name string is not yet implemented.

#WA_Colors - this equally great idea about associating a palette
specification with the active window may not ever be implemented.

#WA_Zoom - ti_Data points to an array of four WORD’s to be used
as the initial Left/Top/Width/Height of the "alternate
Zoom position and dimensions." The presence of this tag
item implies that you want a Zoom gadget, even though you
might not have a sizing gadget.
New for V39: if the initial zoom-box left and top are
both set to ~0, then Intuition will give your window
"size-only" zooming, meaning that zooming the window
will not affect the left/top unless the window needs

Window 7 / 16

to be moved on-screen.

#WA_MouseQueue - This tag specifies a limit for the number
of outstanding IDCMP_MOUSEMOVE IntuiMessages that Intuition
will send to your window. You can change the value of this
limit after the window is open using SetMouseQueue().

#WA_RptQueue - This tag specifies a limit for the number of
outstanding repeated-IDCMP_RAWKEY, repeated-IDCMP_VANILLAKEY,
and repeated-IDCMP_IDCMPUPDATE IntuiMessages that Intuition will
send to your window. Currently, there is no function to adjust
the repeat-key queue.

#WA_BackFill - ti_Data is a pointer to a Hook structure that
the Layers library will call when your window needs
"backfilling." See layers.library/InstallLayerHook().

#WA_MenuHelp - ti_Data is a boolean. If true, enables the MenuHelp
feature for this window. See IDCMP_MENUHELP above. (V37)

#WA_NotifyDepth - ti_Data is a boolean. Set to true if you
would also like IDCMP_CHANGEWINDOW events sent to your window
when it is depth-arranged. Normally, such events are only
sent for movement or resizing of the window.
IDCMP_CHANGEWINDOW events originating from
depth-arrangement have a Code equal to CWCODE_DEPTH, as
opposed to CWCODE_MOVESIZE. (V39)

#WA_Checkmark - (ti_Data is struct Image *) Image to use as a
checkmark in menus. Prior to V39, or if #WA_NewLookMenus
is not specified, the default will be the traditional
checkmark in the original colors. Under V39 and higher,
if you have requested #WA_NewLookMenus then the default will
be an appropriately colored checkmark scaled to the screen’s
font. Alternately, you can provide a custom one, which you
can~design yourself or get from sysiclass (use this if
your menu-font is different from the screen’s font).

#WA_AmigaKey - (ti_Data is struct Image *) Image to use as
the Amiga-key symbol in menus. If #WA_NewLookMenus is not
specified, the default will be the traditional Amiga-key
symbol in the original colors. If you’ve requested
#WA_NewLookMenus, then the default will be an appropriately
colored Amiga-key scaled to the screen’s font.
Alternately, you can provide a custom one, which you can
design yourself or get from sysiclass (use this if your
menu-font is different from the screen’s font). (V39)

#WA_Pointer - (APTR) The pointer you wish to associate with
your window. If NULL, you are requesting the Preferences
default pointer. Custom pointers should be allocated by
performing a NewObject() on "pointerclass". (See
<intuition/pointerclass.h>). Defaults to NULL. This tag is
also recognized by SetWindowPointerA(). (V39)

#WA_BusyPointer (BOOL) - Set to TRUE to request the Preferences
busy-pointer. If FALSE, your pointer will be as requested

Window 8 / 16

by #WA_Pointer. Defaults to FALSE. This tag is also
recognized by SetWindowPointerA(). (V39)

#WA_PointerDelay - (BOOL) Set to TRUE to defer changing your
pointer for a brief instant. This is typically used along
with setting the busy pointer, especially when the
application knows it may be busy for a very short while. If
the application clears the pointer or sets another pointer
before the delay expires, the pending pointer change is
cancelled. This reduces short flashes of the busy pointer.
This tag is also recognized by SetWindowPointerA(). (V39)

#WA_HelpGroup - (ULONG) Normally, only the active window can
receive IDCMP_GADGETHELP messages. However, an application
with multiple windows will want all its windows to be able
to receive help when any of them are active. First obtain a
unique help ID with utility.library/GetUniqueID(), then
pass it as ti_Data of this tag to all your windows. See
HelpControl(). (V39)

#WA_HelpGroupWindow - (struct Window *) Instead of using
#WA_HelpGroup, you can pass a pointer to another window
whose HelpGroup you wish this window to belong to. (V39)

#WA_TabletMessages - (BOOL) Set to TRUE to request extended
IntuiMessages for your window. If a tablet driver is
generating IESUBCLASS_NEWTABLET input events, you will be
able to receive extended tablet information with most
IntuiMessages. See the eim_TabletData field of the
ExtIntuiMessage structure. Defaults to FALSE. (V39)

1.8 nwmousex

SYNTAX
x.w = NWMouseX

FUNCTION
Return the actual mouse position from the left of the used window.

1.9 nwmousey

SYNTAX
y.w = NWMouseY

FUNCTION
Return the actual mouse position from the top of the used window.
Values can be positive or negative.

1.10 nwindowwidth

Window 9 / 16

SYNTAX
width.w = NWindowWidth

FUNCTION
Return the width in pixel of the used window.

1.11 nwindowheight

SYNTAX
height.w = NWindowHeight

FUNCTION
Return the height in pixel of the used window.

1.12 nwindowx

SYNTAX
x.w = NWindowX

FUNCTION
Return the left position in pixel of the used window.

1.13 nwindowy

SYNTAX
y.w = NWindowY

FUNCTION
Return the top position in pixel of the used window.

1.14 nwindowrastport

SYNTAX
rastport.l = NWRastPort

FUNCTION
Return the rastport of the used window. RastPort is very useful for
advanced coder to use the AmigaOS external graphic function under
Blitz 2.

1.15 nwmove

Window 10 / 16

SYNTAX
NWMove(x,y)

STATEMENT
Move the window to the specified coordinates.

1.16 nwsize

SYNTAX
NWSize(width, height)

STATEMENT
Resize the window to given dimensions.

1.17 nwactivate

SYNTAX
NWActivate

STATEMENT
Activate the used window.

1.18 nusewindow

SYNTAX
NUseWindow(#Window)

STATEMENT
Change the used window to given window.

1.19 nclosewindow

SYNTAX
NCloseWindow(#Window)

STATEMENT
Close the given window.

1.20 ninitwindow

SYNTAX
result.l = NInitWindow(#NumWindowMax)

FUNCTION

Window 11 / 16

Init all the Window environnement for later use. You must put this
functions on top of your source code if you want to use the NWindow
commands. You can test the result to see if the Window envirronement
is right initialized.

#NumWindowMax : Maximum number of window to handle.

1.21 nwindowid

SYNTAX
WindowID.l = NWindowID

FUNCTION
Return the Intuition Window pointer.

1.22 nbusypointer

SYNTAX
NBusyPointer State

FUNCTION
State = 0 or 1. If State = 1 a busypointer will be displayed for the
current window, else the normal pointer will be displayed.

1.23 ninnerheight

SYNTAX
Result.w = NInnerHeight

FUNCTION
Return the used window inner height in pixel (window’s height
without the top and bottom borders length)

1.24 ninnerwidth

SYNTAX
Result.w = NInnerWidth

FUNCTION
Return the used window inner width in pixel (window’s width
without the left and right borders length)

1.25 ndetachmenu

Window 12 / 16

SYNTAX
NDetachMenu

STATEMENT
Detach the menu of the currently used window. It’s often used to
change the menu layout and re-attach the new menu (NAttachMenu()).

1.26 idcmp

IDCMP is an acronyme for : ’Intuition Direct Communication Message Port’

Background: The Amiga interface system (called Intuition) communicate
with the rest of the Amiga libraries trough the messages
ports. Each Windows opened has a message port which recieve
all the informations needed to the good graphical handle.
For example, when you press the mouse button on a gadget,
a message is sent to the window and say ’A gadget has been
pushed’. It’s the role of the IDCMP, which are constants
and each one correspons to one different actions. Here is
the list of all actions which can appen to your window.

Note: to recieve the messages, you need to say it when you open your
window (with the #WA_IDCMP, <Your IDCMP you want to recieve here> inside
the taglist)

All these constants are in the AmigaLibs.res file.

IDCMP Description:

- #IDCMP_NEWSIZE is the flag that tells Intuition to send an IDCMP
message to you after the user has resized your window. At
this point, you could examine the size variables in your
window structure to discover the new size of the window.
See also the #IDCMP_CHANGEWINDOW IDCMP flag.

- #IDCMP_REFRESHWINDOW when set will cause a message to be sent
whenever your window needs refreshing. This flag makes
sense only with #WFLG_SIMPLE_REFRESH and #WFLG_SMART_REFRESH
windows.

- #IDCMP_MOUSEBUTTONS will get reports about mouse-button up/down
events broadcast to you (Note: only the ones that
don’t mean something to Intuition. If the user clicks the
select button over a gadget, Intuition deals with it and you
don’t find out about it through here).

- #IDCMP_MOUSEMOVE will work only if you’ve set the
#WFLG_REPORTMOUSE flag above, or if one of your gadgets has the
#GACT_FOLLOWMOUSE flag set. Then all mouse movements will be
reported here, providing your window is active.

- #IDCMP_GADGETDOWN means that when the User "selects" a gadget
you’ve created with the #GACT_IMMEDIATE flag set, the fact

Window 13 / 16

will be broadcast through the IDCMP.

- #IDCMP_GADGETUP means that when the user "releases" a gadget that
you’ve created with the #GACT_RELVERIFY flag set, the fact
will be broadcast through the IDCMP. This message is
only generated if the release is "good", such as releasing
the select button over a Boolean gadget, or typing ENTER
in a string gadget.

- #IDCMP_MENUPICK selects that menu number data will be sent via
the IDCMP.

- #IDCMP_CLOSEWINDOW means broadcast the #IDCMP_CLOSEWINDOW event
through the IDCMP rather than the console.

- #IDCMP_RAWKEY selects that all #IDCMP_RAWKEY events are
transmitted via the IDCMP. Note that these are absolutely RAW
keycodes, which you will have to translate before using.
Setting this and the MOUSE flags effectively eliminates the need
to open a Console device to get input from the keyboard and
mouse. Of course, in exchange you lose all of the console
features, most notably the "cooking" of input data and
the systematic output of text to your window.

- #IDCMP_VANILLAKEY is for developers who don’t want the hassle
of #IDCMP_RAWKEYS. This flag will return all the keycodes after
translation via the current country-dependent keymap. When
you set this flag, you will get IntuiMessages where the Code
field has a decoded ANSI character code representing the key
struck on the keyboard. Only codes that map to a single
character are returned: you can’t read such keys as HELP or
the function keys with #IDCMP_VANILLAKEY.

NEW FOR V36: If you have both #IDCMP_RAWKEY and #IDCMP_VANILLAKEY
set, Intuition will send an #IDCMP_RAWKEY event for those

downstrokes which do not map to single-byte characters
("non-vanilla" keys). In this way you can easily detect cursor
keys, function keys, and the Help key without sacrificing the
convenience of #IDCMP_VANILLAKEY. NB: A side-effect of having
both #IDCMP_RAWKEY and #IDCMP_VANILLAKEY set is that you never
hear #IDCMP_RAWKEY upstrokes, even for keys that caused
#IDCMP_RAWKEY downstrokes.

- #IDCMP_INTUITICKS gives you simple timer events from Intuition
when your window is the active one; it may help you avoid
opening and managing the timer device. With this flag set,
you will get only one queued-up INTUITICKS message at a
time. If Intuition notices that you’ve been sent an
#IDCMP_INTUITICKS message and haven’t replied to it, another
message will not be sent. Intuition receives timer events and
considers sending you an #IDCMP_INTUITICKS message approximately
ten times a second.

- #IDCMP_DELTAMOVE gives raw (unscaled) input event delta X/Y
values. This is so you can detect mouse motion regardless of
screen/window/display boundaries. This works a little
strangely: if you set both #IDCMP_MOUSEMOVE and #IDCMP_DELTAMOVE.

Window 14 / 16

IDCMPFlags, you will get #IDCMP_MOUSEMOVE messages with delta
x/y values in the MouseX and MouseY fields of the
IDCMPMessage.

- #IDCMP_NEWPREFS indicates you wish to be notified when the
system-wide Preferences changes. For V36, there is a new
environment mechanism to replace Preferences, which we
recommend you consider using instead.

- Set #IDCMP_ACTIVEWINDOW and #IDCMP_INACTIVEWINDOW to get messages
when those events happen to your window. Take care not to
confuse this "ACTIVEWINDOW" with the familiar sounding, but
totally different "WINDOWACTIVE" flag. These two flags have
been supplanted by "#IDCMP_ACTIVEWINDOW" and "#WFLG_WINDOWACTIVE".
Use the new equivalent terms to avoid confusion.

- Set #IDCMP_DISKINSERTED or #IDCMP_DISKREMOVED to learn when
removable disks are inserted or removed, respectively.

- #IDCMP_IDCMPUPDATE is a new class for V36 which is used as
a channel of communication from custom and boopsi gadgets
to your application.

- #IDCMP_CHANGEWINDOW is a new class for V36 that will be sent
to your window whenever its dimensions or position are changed
by the user or the functions SizeWindow(), MoveWindow(),
ChangeWindowBox(), or ZipWindow().

- #IDCMP_MENUHELP is new for V37. If you specify the #WA_MenuHelp
tag when you open your window, then when the user presses the
HELP key on the keyboard during a menu session, Intuition will
terminate the menu session and issue this even in place of an
#IDCMP_MENUPICK message.

- NEVER follow the NextSelect link for MENUHELP messages.
- You will be able to hear MENUHELP for ghosted menus.

(This lets you tell the user why the option is ghosted.)
- Be aware that you can receive a MENUHELP message whose code

corresponds to a menu header or an item that has sub-items
(which does not happen for MENUPICK). The code may also be
MENUNULL.

- LIMITATION: if the user extend-selects some checkmarked
items with the mouse, then presses MENUHELP, your
application will only hear the MENUHELP report. You
must re-examine the state of your checkmarks when you
get a MENUHELP.

- Availability of MENUHELP in V36 is not directly
controllable. We apologize...

- #IDCMP_GADGETHELP is new for V39. If you turn on
gadget help for your window (using the HelpControl())
function, then Intuition will send #IDCMP_GADGETHELP
messages when the mouse passes over certain gadgets or
your window. The IntuiMessage->Code field is normally
~0, but a boopsi gadget can return any word value it wishes.

Ordinarily, gadget help is only processed for the active
window. When Intuition has determined that the mouse is

Window 15 / 16

pointing at a gadget which has the GMORE_GADGETHELP
property, you will be sent an #IDCMP_GADGETHELP message
whose IAddress points to the gadget. When the mouse is
over your window but not over any help-aware gadget, you
will be sent a message whose IAddress is the window
itself. When the mouse is not over your window,
Intuition sends a message whose IAddress is zero.

A multi-window application can use the #WA_HelpGroup or
#WA_HelpGroupWindow tags to indicate that all its windows
belong in a group. (The help group identifier should be
obtained with utility.library/GetUniqueID().) This makes
Intuition test gadget help in all windows of the group
when any one of them is the active one. Inactive windows
whose #WA_HelpGroup matches the active window’s receive
#IDCMP_GADGETHELP messages when the mouse is over that
window or any of its help-aware gadgets. The GADGETHELP
message with an IAddress of zero means the mouse is not
over the active window or any other window of the same
group. It is always sent to the active window (which is
not necessarily the window in your group that last got a
message).

To maximize performance, gadget help is not checked
while the mouse is travelling quickly, or if it has not
moved at all since the last test. As well, if Intuition
discovers that the mouse is still over same gadget and
that gadget does not wish to send a different
IntuiMessage->Code from the last message, no new
IntuiMessage is sent.

- #IDCMP_REQVERIFY is the flag which, like #IDCMP_SIZEVERIFY and ...

- #IDCMP_MENUVERIFY (see immediately below), specifies that you
want to make sure that your graphical state is quiescent
before something extraordinary happens. In this case, the
extraordinary event is that a rectangle of graphical data is
about to be blasted into your Window. If you’re drawing
directly into its screen, you probably will wish to make sure
that you’ve ceased drawing before the user is allowed to bring
up the DMRequest you’ve set up, and the same for when system
has a request for the user. Set this flag to ask for that
verification step.

- #IDCMP_REQCLEAR is the flag you set to hear a message whenever
a requester is cleared from your window. If you are using
#IDCMP_REQVERIFY to arbitrate access to your screen’s bitmap, it
is safe to start your output once you have heard an
#IDCMP_REQCLEAR for each #IDCMP_REQSET.

- #IDCMP_REQSET is a flag that you set to receive a broadcast
for each requester that is opened in your window. Compare
this with #IDCMP_REQCLEAR above. This function is distinct
from #IDCMP_REQVERIFY. This functions merely tells you that a
requester has opened, whereas #IDCMP_REQVERIFY requires you to
respond before the requester is opened.

Window 16 / 16

- #IDCMP_MENUVERIFY is the flag you set to have Intuition stop
and wait for you to finish all graphical output to your
window before rendering the menus. Menus are currently
rendered in the most memory-efficient way, which involves
interrupting output to all windows in the screen before the
menus are drawn. If you need to finish your graphical
output before this happens, you can set this flag to make
sure that you do.

- #IDCMP_SIZEVERIFY means that you will be doing output to your
window which depends on a knowledge of the current size of the
window. If the user wants to resize the window, you may want
to make sure that any queued output completes before the sizing
takes place (critical text, for instance). If this is the
case, set this flag. Then, when the user wants to size,
Intuition will send you the #IDCMP_SIZEVERIFY message and Wait()
until you reply that it’s OK to proceed with the sizing. NOTE:
when we say that Intuition will Wait() until you reply, what
we’re really saying is that user will WAIT until you reply, which
suffers the great negative potential of User-Unfriendliness.
So remember: use this flag sparingly, and, as always with any
IDCMP Message you receive, reply to it promptly! Then, after
user has sized the window, you can find out about it using
#IDCMP_NEWSIZE.

	Window
	New Window Library
	ngadgetcode
	nwaitwindowevent
	nwindowevent
	ndetachgadgetlist
	neventid
	nwindow
	nwmousex
	nwmousey
	nwindowwidth
	nwindowheight
	nwindowx
	nwindowy
	nwindowrastport
	nwmove
	nwsize
	nwactivate
	nusewindow
	nclosewindow
	ninitwindow
	nwindowid
	nbusypointer
	ninnerheight
	ninnerwidth
	ndetachmenu
	idcmp

